Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterisation of recombinant pyranose oxidase from the cultivated mycorrhizal basidiomycete Lyophyllum shimeji (hon-shimeji).

Identifieur interne : 000581 ( Main/Exploration ); précédent : 000580; suivant : 000582

Characterisation of recombinant pyranose oxidase from the cultivated mycorrhizal basidiomycete Lyophyllum shimeji (hon-shimeji).

Auteurs : Clara Salaheddin [Autriche] ; Yoshimitsu Takakura ; Masako Tsunashima ; Barbara Stranzinger ; Oliver Spadiut ; Montarop Yamabhai ; Clemens K. Peterbauer ; Dietmar Haltrich

Source :

RBID : pubmed:20630076

Descripteurs français

English descriptors

Abstract

BACKGROUND

The flavin-dependent enzyme pyranose 2-oxidase (P2Ox) has gained increased attention during the last years because of a number of attractive applications for this enzyme. P2Ox is a unique biocatalyst with high potential for biotransformations of carbohydrates and in synthetic carbohydrate chemistry. Recently, it was shown that P2Ox is useful as bioelement in biofuel cells, replacing glucose oxidase (GOx), which traditionally is used in these applications. P2Ox offers several advantages over GOx for this application, e.g., its much broader substrate specificity. Because of this renewed interest in P2Ox, knowledge on novel pyranose oxidases isolated from organisms other than white-rot fungi, which represent the traditional source of this enzyme, is of importance, as these novel enzymes might differ in their biochemical and physical properties.

RESULTS

We isolated and over-expressed the p2ox gene encoding P2Ox from the ectomycorrhizal fungus Lyophyllum shimeji. The p2ox cDNA was inserted into the bacterial expression vector pET21a(+) and successfully expressed in E. coli Rosetta 2. We obtained active, flavinylated recombinant P2Ox in yields of approximately 130 mg per L of medium. The enzyme was purified by a two-step procedure based on anion exchange chromatography and preparative native PAGE, yielding an apparently homogenous enzyme preparation with a specific activity of 1.92 U/mg (using glucose and air oxygen as the substrates). Recombinant P2Ox from L. shimeji was characterized in some detail with respect to its physical and catalytic properties, and compared to the well-characterised enzymes from Phanerochaete chrysosporium and Trametes multicolor.

CONCLUSION

L. shimeji P2Ox shows properties that are comparable to those of P2Ox from white-rot fungal origin, and is in general characterised by lower K(m) and k(cat) values both for electron donor (sugar) as well as electron acceptor (ferrocenium ion, 1,4-benzoquinone, 2,6-dichloroindophenol). While L. shimeji P2Ox is the least thermostable of these three enzymes (melting temperature T(m) of 54.9 degrees C; half-life time of activity tau1/2 of 0.12 at 50 degrees C and pH 6.5), P. chrysosporium P2Ox showed remarkable thermostability with T(m) of 75.4 degrees C and tau1/2 of 96 h under identical conditions.


DOI: 10.1186/1475-2859-9-57
PubMed: 20630076
PubMed Central: PMC2914677


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterisation of recombinant pyranose oxidase from the cultivated mycorrhizal basidiomycete Lyophyllum shimeji (hon-shimeji).</title>
<author>
<name sortKey="Salaheddin, Clara" sort="Salaheddin, Clara" uniqKey="Salaheddin C" first="Clara" last="Salaheddin">Clara Salaheddin</name>
<affiliation wicri:level="3">
<nlm:affiliation>Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University of Natural Resources and Life Sciences, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Takakura, Yoshimitsu" sort="Takakura, Yoshimitsu" uniqKey="Takakura Y" first="Yoshimitsu" last="Takakura">Yoshimitsu Takakura</name>
</author>
<author>
<name sortKey="Tsunashima, Masako" sort="Tsunashima, Masako" uniqKey="Tsunashima M" first="Masako" last="Tsunashima">Masako Tsunashima</name>
</author>
<author>
<name sortKey="Stranzinger, Barbara" sort="Stranzinger, Barbara" uniqKey="Stranzinger B" first="Barbara" last="Stranzinger">Barbara Stranzinger</name>
</author>
<author>
<name sortKey="Spadiut, Oliver" sort="Spadiut, Oliver" uniqKey="Spadiut O" first="Oliver" last="Spadiut">Oliver Spadiut</name>
</author>
<author>
<name sortKey="Yamabhai, Montarop" sort="Yamabhai, Montarop" uniqKey="Yamabhai M" first="Montarop" last="Yamabhai">Montarop Yamabhai</name>
</author>
<author>
<name sortKey="Peterbauer, Clemens K" sort="Peterbauer, Clemens K" uniqKey="Peterbauer C" first="Clemens K" last="Peterbauer">Clemens K. Peterbauer</name>
</author>
<author>
<name sortKey="Haltrich, Dietmar" sort="Haltrich, Dietmar" uniqKey="Haltrich D" first="Dietmar" last="Haltrich">Dietmar Haltrich</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20630076</idno>
<idno type="pmid">20630076</idno>
<idno type="doi">10.1186/1475-2859-9-57</idno>
<idno type="pmc">PMC2914677</idno>
<idno type="wicri:Area/Main/Corpus">000548</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000548</idno>
<idno type="wicri:Area/Main/Curation">000548</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000548</idno>
<idno type="wicri:Area/Main/Exploration">000548</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterisation of recombinant pyranose oxidase from the cultivated mycorrhizal basidiomycete Lyophyllum shimeji (hon-shimeji).</title>
<author>
<name sortKey="Salaheddin, Clara" sort="Salaheddin, Clara" uniqKey="Salaheddin C" first="Clara" last="Salaheddin">Clara Salaheddin</name>
<affiliation wicri:level="3">
<nlm:affiliation>Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University of Natural Resources and Life Sciences, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Takakura, Yoshimitsu" sort="Takakura, Yoshimitsu" uniqKey="Takakura Y" first="Yoshimitsu" last="Takakura">Yoshimitsu Takakura</name>
</author>
<author>
<name sortKey="Tsunashima, Masako" sort="Tsunashima, Masako" uniqKey="Tsunashima M" first="Masako" last="Tsunashima">Masako Tsunashima</name>
</author>
<author>
<name sortKey="Stranzinger, Barbara" sort="Stranzinger, Barbara" uniqKey="Stranzinger B" first="Barbara" last="Stranzinger">Barbara Stranzinger</name>
</author>
<author>
<name sortKey="Spadiut, Oliver" sort="Spadiut, Oliver" uniqKey="Spadiut O" first="Oliver" last="Spadiut">Oliver Spadiut</name>
</author>
<author>
<name sortKey="Yamabhai, Montarop" sort="Yamabhai, Montarop" uniqKey="Yamabhai M" first="Montarop" last="Yamabhai">Montarop Yamabhai</name>
</author>
<author>
<name sortKey="Peterbauer, Clemens K" sort="Peterbauer, Clemens K" uniqKey="Peterbauer C" first="Clemens K" last="Peterbauer">Clemens K. Peterbauer</name>
</author>
<author>
<name sortKey="Haltrich, Dietmar" sort="Haltrich, Dietmar" uniqKey="Haltrich D" first="Dietmar" last="Haltrich">Dietmar Haltrich</name>
</author>
</analytic>
<series>
<title level="j">Microbial cell factories</title>
<idno type="eISSN">1475-2859</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agaricales (enzymology)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Carbohydrate Dehydrogenases (chemistry)</term>
<term>Carbohydrate Dehydrogenases (genetics)</term>
<term>Carbohydrate Dehydrogenases (metabolism)</term>
<term>Fungal Proteins (chemistry)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Half-Life (MeSH)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Protein Stability (MeSH)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agaricales (enzymologie)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Carbohydrate dehydrogenases (composition chimique)</term>
<term>Carbohydrate dehydrogenases (génétique)</term>
<term>Carbohydrate dehydrogenases (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Protéines fongiques (composition chimique)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Période (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Stabilité protéique (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carbohydrate Dehydrogenases</term>
<term>Fungal Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Carbohydrate dehydrogenases</term>
<term>Protéines fongiques</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Agaricales</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Agaricales</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Carbohydrate Dehydrogenases</term>
<term>Fungal Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Carbohydrate dehydrogenases</term>
<term>Protéines fongiques</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbohydrate Dehydrogenases</term>
<term>Fungal Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carbohydrate dehydrogenases</term>
<term>Protéines fongiques</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Half-Life</term>
<term>Hydrogen-Ion Concentration</term>
<term>Kinetics</term>
<term>Molecular Sequence Data</term>
<term>Protein Stability</term>
<term>Sequence Alignment</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Cinétique</term>
<term>Concentration en ions d'hydrogène</term>
<term>Données de séquences moléculaires</term>
<term>Période</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Stabilité protéique</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The flavin-dependent enzyme pyranose 2-oxidase (P2Ox) has gained increased attention during the last years because of a number of attractive applications for this enzyme. P2Ox is a unique biocatalyst with high potential for biotransformations of carbohydrates and in synthetic carbohydrate chemistry. Recently, it was shown that P2Ox is useful as bioelement in biofuel cells, replacing glucose oxidase (GOx), which traditionally is used in these applications. P2Ox offers several advantages over GOx for this application, e.g., its much broader substrate specificity. Because of this renewed interest in P2Ox, knowledge on novel pyranose oxidases isolated from organisms other than white-rot fungi, which represent the traditional source of this enzyme, is of importance, as these novel enzymes might differ in their biochemical and physical properties.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We isolated and over-expressed the p2ox gene encoding P2Ox from the ectomycorrhizal fungus Lyophyllum shimeji. The p2ox cDNA was inserted into the bacterial expression vector pET21a(+) and successfully expressed in E. coli Rosetta 2. We obtained active, flavinylated recombinant P2Ox in yields of approximately 130 mg per L of medium. The enzyme was purified by a two-step procedure based on anion exchange chromatography and preparative native PAGE, yielding an apparently homogenous enzyme preparation with a specific activity of 1.92 U/mg (using glucose and air oxygen as the substrates). Recombinant P2Ox from L. shimeji was characterized in some detail with respect to its physical and catalytic properties, and compared to the well-characterised enzymes from Phanerochaete chrysosporium and Trametes multicolor.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>L. shimeji P2Ox shows properties that are comparable to those of P2Ox from white-rot fungal origin, and is in general characterised by lower K(m) and k(cat) values both for electron donor (sugar) as well as electron acceptor (ferrocenium ion, 1,4-benzoquinone, 2,6-dichloroindophenol). While L. shimeji P2Ox is the least thermostable of these three enzymes (melting temperature T(m) of 54.9 degrees C; half-life time of activity tau1/2 of 0.12 at 50 degrees C and pH 6.5), P. chrysosporium P2Ox showed remarkable thermostability with T(m) of 75.4 degrees C and tau1/2 of 96 h under identical conditions.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20630076</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>10</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1475-2859</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<PubDate>
<Year>2010</Year>
<Month>Jul</Month>
<Day>14</Day>
</PubDate>
</JournalIssue>
<Title>Microbial cell factories</Title>
<ISOAbbreviation>Microb Cell Fact</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterisation of recombinant pyranose oxidase from the cultivated mycorrhizal basidiomycete Lyophyllum shimeji (hon-shimeji).</ArticleTitle>
<Pagination>
<MedlinePgn>57</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1475-2859-9-57</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The flavin-dependent enzyme pyranose 2-oxidase (P2Ox) has gained increased attention during the last years because of a number of attractive applications for this enzyme. P2Ox is a unique biocatalyst with high potential for biotransformations of carbohydrates and in synthetic carbohydrate chemistry. Recently, it was shown that P2Ox is useful as bioelement in biofuel cells, replacing glucose oxidase (GOx), which traditionally is used in these applications. P2Ox offers several advantages over GOx for this application, e.g., its much broader substrate specificity. Because of this renewed interest in P2Ox, knowledge on novel pyranose oxidases isolated from organisms other than white-rot fungi, which represent the traditional source of this enzyme, is of importance, as these novel enzymes might differ in their biochemical and physical properties.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We isolated and over-expressed the p2ox gene encoding P2Ox from the ectomycorrhizal fungus Lyophyllum shimeji. The p2ox cDNA was inserted into the bacterial expression vector pET21a(+) and successfully expressed in E. coli Rosetta 2. We obtained active, flavinylated recombinant P2Ox in yields of approximately 130 mg per L of medium. The enzyme was purified by a two-step procedure based on anion exchange chromatography and preparative native PAGE, yielding an apparently homogenous enzyme preparation with a specific activity of 1.92 U/mg (using glucose and air oxygen as the substrates). Recombinant P2Ox from L. shimeji was characterized in some detail with respect to its physical and catalytic properties, and compared to the well-characterised enzymes from Phanerochaete chrysosporium and Trametes multicolor.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">L. shimeji P2Ox shows properties that are comparable to those of P2Ox from white-rot fungal origin, and is in general characterised by lower K(m) and k(cat) values both for electron donor (sugar) as well as electron acceptor (ferrocenium ion, 1,4-benzoquinone, 2,6-dichloroindophenol). While L. shimeji P2Ox is the least thermostable of these three enzymes (melting temperature T(m) of 54.9 degrees C; half-life time of activity tau1/2 of 0.12 at 50 degrees C and pH 6.5), P. chrysosporium P2Ox showed remarkable thermostability with T(m) of 75.4 degrees C and tau1/2 of 96 h under identical conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Salaheddin</LastName>
<ForeName>Clara</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Takakura</LastName>
<ForeName>Yoshimitsu</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tsunashima</LastName>
<ForeName>Masako</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stranzinger</LastName>
<ForeName>Barbara</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Spadiut</LastName>
<ForeName>Oliver</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yamabhai</LastName>
<ForeName>Montarop</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Peterbauer</LastName>
<ForeName>Clemens K</ForeName>
<Initials>CK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Haltrich</LastName>
<ForeName>Dietmar</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>L 213</GrantID>
<Agency>Austrian Science Fund FWF</Agency>
<Country>Austria</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>07</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Microb Cell Fact</MedlineTA>
<NlmUniqueID>101139812</NlmUniqueID>
<ISSNLinking>1475-2859</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.-</RegistryNumber>
<NameOfSubstance UI="D002237">Carbohydrate Dehydrogenases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.3.10</RegistryNumber>
<NameOfSubstance UI="C022489">pyranose oxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000363" MajorTopicYN="N">Agaricales</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002237" MajorTopicYN="N">Carbohydrate Dehydrogenases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006207" MajorTopicYN="N">Half-Life</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055550" MajorTopicYN="N">Protein Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>03</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>07</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20630076</ArticleId>
<ArticleId IdType="pii">1475-2859-9-57</ArticleId>
<ArticleId IdType="doi">10.1186/1475-2859-9-57</ArticleId>
<ArticleId IdType="pmc">PMC2914677</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Microb Cell Fact. 2010;9:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20214772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2003 Mar 15;314(2):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 1997 May;47(5):508-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9210340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 May 19;48(19):4170-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19317444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol J. 2009 Apr;4(4):525-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19291706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Apr;67(4):1766-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11282631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2009 Feb;276(3):776-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19143837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2001 Nov;101(11):3397-413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11749405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2007 Apr;11(2):220-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17307381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1993 Aug 1;215(3):747-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8354282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2000 Dec;54(6):727-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Jul;62(7):2586-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2009 Aug;31(8):1223-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19343506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Aug;67(8):3636-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11472941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2007 Jun 30;130(3):229-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17566580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Folia Microbiol (Praha). 1985;30(2):141-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3996982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1968 Nov 19;167(3):493-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5725162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2003 Dec;67(12):2598-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14730138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2009 Feb 5;139(3):250-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19095017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Oct;70(10):5794-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2004 Jul;36(1):61-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15177285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10747-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7938023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Nov;58(11):3667-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2002 Jun;12(3):105-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12072980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol J. 2009 Apr;4(4):501-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19370717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1989 Apr 15;181(1):1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2653819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol J. 2009 Apr;4(4):535-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19370721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Mar 26;285(13):9697-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20089849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2009 Jun 15;142(2):97-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19501263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2001 Dec;12(6):545-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11849936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 17;281(46):35104-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16984920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2009 Dec;3(12):1387-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19571893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Aug 19;47(33):8485-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18652479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Aug 13;341(3):781-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15288786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 1998 Spring;70-72:237-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9627385</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Autriche</li>
</country>
<region>
<li>Vienne (Autriche)</li>
</region>
<settlement>
<li>Vienne (Autriche)</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Haltrich, Dietmar" sort="Haltrich, Dietmar" uniqKey="Haltrich D" first="Dietmar" last="Haltrich">Dietmar Haltrich</name>
<name sortKey="Peterbauer, Clemens K" sort="Peterbauer, Clemens K" uniqKey="Peterbauer C" first="Clemens K" last="Peterbauer">Clemens K. Peterbauer</name>
<name sortKey="Spadiut, Oliver" sort="Spadiut, Oliver" uniqKey="Spadiut O" first="Oliver" last="Spadiut">Oliver Spadiut</name>
<name sortKey="Stranzinger, Barbara" sort="Stranzinger, Barbara" uniqKey="Stranzinger B" first="Barbara" last="Stranzinger">Barbara Stranzinger</name>
<name sortKey="Takakura, Yoshimitsu" sort="Takakura, Yoshimitsu" uniqKey="Takakura Y" first="Yoshimitsu" last="Takakura">Yoshimitsu Takakura</name>
<name sortKey="Tsunashima, Masako" sort="Tsunashima, Masako" uniqKey="Tsunashima M" first="Masako" last="Tsunashima">Masako Tsunashima</name>
<name sortKey="Yamabhai, Montarop" sort="Yamabhai, Montarop" uniqKey="Yamabhai M" first="Montarop" last="Yamabhai">Montarop Yamabhai</name>
</noCountry>
<country name="Autriche">
<region name="Vienne (Autriche)">
<name sortKey="Salaheddin, Clara" sort="Salaheddin, Clara" uniqKey="Salaheddin C" first="Clara" last="Salaheddin">Clara Salaheddin</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000581 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000581 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20630076
   |texte=   Characterisation of recombinant pyranose oxidase from the cultivated mycorrhizal basidiomycete Lyophyllum shimeji (hon-shimeji).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20630076" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020